Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Chem Inf Model ; 63(4): 1276-1292, 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2231853

ABSTRACT

The novel coronavirus disease and its complications have motivated the design of new sensors with the highest sensitivity, and affinity for the detection of the SARS-CoV-2 virus is considered in many research studies. In this research article, we employ full atomistic molecular dynamics (MD) models to study the interactions between the receptor binding domain (RBD) and spike protein of the coronavirus and different metals such as gold (Au), platinum (Pt), and silver (Ag) to analyze their sensitivity against this virus. The comparison between the RBD interactions with ACE2 (angiotensin-converting enzyme 2) and different metals indicates that metals have remarkable effects on the structural features and dynamical properties of the RBD. The binding site of the RBD has more affinity to the surfaces of gold, platinum, and silver than to the other parts of the protein. Moreover, the initial configuration of the RBD relative to the metal surface plays an important role in the stability of metal complexes with the RBD. The binding face of the protein to the metal surface has been changed in the presence of different metals. In other words, the residues of the RBD that participate in RBD interactions with the metals are different irrespective of the initial configurations in which the [Asn, Thr, Tyr], [Ser, Thr, Tyr], and [Asn, Asp, Tyr] residues of the protein have a greater affinity to Ag, Au, and Pt, respectively. The corresponding metals have a considerable affinity to the RBD, which due to strong interactions with the protein can change the secondary structure and structural features. Based on the obtained results during the complexation process between the protein and metals, the helical structure of the protein changes to the bend and antiparallel ß-sheets. The calculated binding energies for the RBD complexes with silver, gold, and platinum are -95.03, -138.03, and -133.96 kcal·mol-1, respectively. The adsorption process of the spike protein on the surfaces of different metals represents similar results and indicates that the entire spike protein of the coronavirus forms a more stable complex with the gold surface compared with other metals. Moreover, the RBD of the spike protein has more interactions with the surfaces than with the other parts of the protein. Therefore, it is possible to predict the properties of the coronavirus on the metal surface based on the dynamical behavior of the RBD. Overall, our computational results confirm that the gold surface can be considered as an outstanding substrate for developing new sensors with the highest sensitivity against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Silver , Platinum , Gold , Spike Glycoprotein, Coronavirus/metabolism , Protein Binding , Molecular Dynamics Simulation
2.
J Mol Liq ; 345: 117852, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1466795

ABSTRACT

Due to the dramatic increase in the number of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), designing new selective and sensitive sensors for the detection of this virus is of importance. In this research, by employing full atomistic molecular dynamics (MD) simulations, the interactions of the receptor-binding domain (RBD) of the SARS-CoV-2 with phosphorene and graphene nanosheets were analyzed to investigate their sensing ability against this protein. Based on the obtained results, the RBD interactions with the surface of graphene and phosphorene nanosheets do not have important effects on the folding properties of the RBD but this protein has unique dynamical behavior against each nanostructure. In the presence of graphene and phosphorene, the RBD has lower stability because due to the strong interactions between RBD and these nanostructures. This protein spreads on the surface and has lower structural compaction, but in comparison with graphene, RBD shows greater stability on the surface of the phosphorene nanosheet. Moreover, RBD forms a more stable complex with phosphorene nanosheet in comparison with graphene due to greater electrostatic and van der Waals interactions. The calculated Gibbs binding energy for the RBD complexation process with phosphorene and graphene are -200.37 and -83.65 kcal mol-1, respectively confirming that phosphorene has higher affinity and sensitivity against this protein than graphene. Overall, the obtained results confirm that phosphorene can be a good candidate for designing new nanomaterials for selective detection of SARS-CoV-2.

3.
J Phys Chem Lett ; 11(24): 10284-10289, 2020 Dec 17.
Article in English | MEDLINE | ID: covidwho-940876

ABSTRACT

In this research, through the use of molecular dynamics (MD) simulations, the ability of gold nanoparticles (AuNPs) functionalized by different groups, such as 3-mercaptoethylsulfonate (Mes), undecanesulfonic acid (Mus), octanethiol (Ot), and a new peptide, to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated. According to the crystal structure of angiotensin-converting enzyme 2 (ACE2), which binds to the SARS-CoV-2 receptor binding domain (RBD), 15 amino acids of ACE2 have considerable interaction with RBD. Therefore, a new peptide based on these amino acids was designed as the functional group for AuNP. On the basis of the obtained results, functionalized AuNPs have remarkable effects on the RBD and strongly interact with this protein of SARS-CoV-2. Among the studied nanoparticles, the AuNP functionalized by new peptide forms a more stable complex with RBD in comparison with ACE2, which is the human receptor for SARS-CoV-2. Different analyses confirm that the designed AuNPs can be good candidates for antiviral agents against COVID-19 disease.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Theoretical , Receptors, Coronavirus/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Binding Sites , Drug Design , Gold/pharmacology , Humans , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL